Design Method of Full-scale Fatigue Test Load for Wind Turbine Blade
نویسندگان
چکیده
Abstract The blade is one of the key components a wind turbine, and alternating fatigue load main factor leading to failure turbine blades. accuracy determines test. Based on equivalent torque time history data from acting root, two-dimensional matrix obtained by using compression technology rain flow counting algorithm. According capture data, frequency various design loading cases distribution speed, symmetrical spectrum calculated compiled. for certain type 2MW blade, which lays foundation test system.
منابع مشابه
Wind Turbine Blade Design
A detailed review of the current state-of-art for wind turbine blade design is presented, including theoretical maximum efficiency, propulsion, practical efficiency, HAWT blade design, and blade loads. The review provides a complete picture of wind turbine blade design and shows the dominance of modern turbines almost exclusive use of horizontal axis rotors. The aerodynamic design principles fo...
متن کاملWind Turbine Blade Design for Subscale Testing
Two different inverse design approaches are proposed for developing wind turbine blades for sub-scale wake testing. In the first approach, dimensionless circulation is matched for full scale and sub-scale wind turbine blades for equal shed vorticity in the wake. In the second approach, the normalized normal and tangential force distributions are matched for large scale and small scale wind turb...
متن کاملDesign of a Wind Tunnel Scale Model of an Adaptive Wind Turbine Blade for Active Aerodynamic Load Control Experiments
Within wind energy research there is a drive towards the development of a “smart rotor”; a rotor of which the loading can be measured and controlled through the application of a sensor system, a control system and an aerodynamic device. Most promising solutions from an aerodynamic point of view are trailing edge flaps, either hinged or continuously deformable. An experiment was considered neces...
متن کاملA Full-Scale Fatigue Test of 9-m CX-100 Wind Turbine Blades
This paper presents the SHM result of a 9m CX-100 wind turbine blade under fullscale fatigue loads. The test was performed at the National Renewable Energy Laboratory. The 9-meter blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges on the surface of the blade. The blade underwent fatigue excitation at 1.8 Hz for defined interv...
متن کاملPerformance improvement of a wind turbine blade using a developed inverse design method
The purpose of this study is to improve the aerodynamic performance of wind turbine blades, using the Ball-Spine inverse design method. The inverse design goal is to calculate a geometry corresponds to a given pressure distribution on its boundaries. By calculating the difference between the current and target pressure distributions, geometric boundaries are modified so that the pressure di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2023
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2527/1/012035